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1. INTRODUCTION

Consider a uniform thin beam supported only by two symmetrically placed point
supports. Where do we put the supports such that the fundamental frequency, below
which the beam cannot vibrate, is maximized? If the supports are rigid, Courant and
Hilbert [1] showed that the optimum locations are at the interior nodes of a higher
vibration mode without the supports. The situation becomes more complicated when the
supports are not perfectly rigid, which often occurs in practice. Szelag and Mroz [2]
showed that the optimum location may not be at a higher node, but at a bimodal location.
Similar to buckling of beams with elastic support [3], Akesson and Ohloff [4] showed there
exists a minimum stiffness of the support above which the fundamental frequency no
longer increases. Won and Park [5] suggested a numerical method to study the
optimization of multiple supports. The present note is an in-depth study of the
fundamental modes of a free-vibrating beam, supported by two symmetrically placed
elastic supports. For accuracy, the characteristic equations are obtained analytically.

2. FORMULATION

Let the beam be of length 2L and x be the distance from the middle, normalized by L.
By letting the transverse displacement be wðxÞ cosðotÞ; the governing equation for beam
vibration is [6, 7]

w0000ðxÞ � l4w ¼ 0; ð1Þ

where l4 ¼ ðmass per length r) L4(frequency o2)/(flexural rigidity D) is the square of the
normalized frequency. The supports are at x ¼ �b with spring constant c. The ends of the
beam are free.

For a symmetric problem, the vibration modes can either be symmetric or
antisymmetric. In either case it suffices to consider only half the beam. Let the subscript
I denote the segment 04x4b and subscript II denote the segment b4x41: Thus, the
solution for segment I is

wIðxÞ ¼ C1 coshðlxÞ þ C2 cosðlxÞ ð2aÞ
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for the symmetric mode, or

wIðxÞ ¼ C1 sinhðlxÞ þ C2 sinðlxÞ ð2bÞ
for the antisymmetric mode. For segment II, the conditions of zero moment and zero
shear at the end yield the solution

wIIðxÞ ¼ C3fsinh½lðx � 1Þ
 þ sin½lðx � 1Þ
g þ C4fcosh½lðx � 1Þ
 þ cos½lðx � 1Þ
g: ð3Þ
At the location x=b, we require continuity of displacement, slope, moment, but the

shear is affected by the spring support.

wIðbÞ ¼ wIIðbÞ; w0
IðbÞ ¼ w0

IIðbÞ; ð4; 5Þ

w00
I ðbÞ ¼ w00

IIðbÞ; w000
I ðbÞ � gwIðbÞ ¼ w000

IIðbÞ: ð6; 7Þ
Here, g ¼ cL3=D is the non-dimensional spring constant of the supports. Equations (2)
and (3) are then substituted into equations (4)–(7). For non-trivial solutions, a 4� 4
characteristic determinant is set to zero. Using a simple bisection method, the frequency
factor l can be obtained to any accuracy.

3. RESULTS AND DISCUSSIONS

Figure 1 shows the frequency as a function of support location for various constant
stiffness. If the supports are rigid, g ¼ 1; and the symmetric mode prevails. The
characteristic equation from equations (2a), (3)–(7) is

½tanhðlbÞ þ tanðlbÞ
fsinh½lðb � 1Þ
cos½lðb � 1Þ
 � cosh½lðb � 1Þ
sin½lðb � 1Þ
g
� 2f1þ cosh½lðb � 1Þ
cos½lðb � 1
g ¼ 0: ð8Þ

When b ¼ 0; the beam is equivalent to a cantilever with a fundamental frequency of
l=1�8751 which is the first root of 1þ coshðlÞcosðlÞ ¼ 0: When b=1, the beam is simply
supported at both ends, with a frequency of l ¼ p=2: The maximum frequency of 2�36503
Figure 1. Fundamental frequency factor l versus support location b for various constant support stiffness g:
}}, symmetric mode; }}}, antisymmetric mode; - - - - - - - - -, boundary of the two modes; }�}�}, locus of
optimum location.
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occurs at the optimum location of b=0�55168 which indeed is at the nodal point of the
next vibration mode. But the situation is more complicated when the supports are elastic.

Now if we only consider the symmetric modes, a decrease in stiffness of the supports
would decrease the fundamental frequency, except at the location b=0�55168, where there
is no decrease (from 2�36503) if the stiffness g is larger than 33�495. However, the
antisymmetric mode has a lower fundamental frequency for most low b values. When
b=0, the fundamental frequency of the antisymmetric mode is zero, corresponding to a
rigid rotation about the beam center. Figure 2 shows the frequency map in more detail.
Due to the antisymmetric mode, the minimum stiffness (to maintain the fundamental
frequency at 2�36503) is raised to 41�961, above which the optimum location remains at
0�55168. The frequency decreases from 2�36503, when the stiffness is decreased from
41�961. For given g541�961; the maxim frequency occurs at the boundary of symmetric
and antisymmetric modes. The optimum locations are given in Table 1.
Figure 2. Detail of Figure 1, same legend.

Table 1

Optimum locations and the corresponding fundamental frequencies

g 1 41�961 33�495 20 10 1 0�1
b 0�5517 0�5517 0�5736 0�5810 0�5810 0�5777 0�5774
l 2�3650 2�3650 2�3140 2�0667 1�7665 0�9993 0�5623
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Vibration of beams with elastic supports is important and there exist a few other papers
on this topic. This note shows that some care must be taken to delineate the complex
interactions among the various modes and the stiffness of the supports.
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